Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xian-Mei Shang, ${ }^{\text {a }}$ Ji-Zhou Wu ${ }^{\text {a }}$

 and Qing-Shan Li $^{\mathbf{a}, \mathbf{b}_{*}}$${ }^{\text {a School of Pharmaceutical Science, Tongji }}$ Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, People's Republic of China

Correspondence e-mail:
ywjz@mail.tjmu.edu.cn,
shang430030@yahoo.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.046$
$w R$ factor $=0.126$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,4-Difluorobenzohydroxamic acid

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~F}_{2} \mathrm{NO}_{2}$, the hydroxyl group is trans to the difluorophenyl group with respect to the $\mathrm{C}-\mathrm{N}$ bond. The molecules are linked into chains of rings parallel to [100] by a combination of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

A range of aroylhydroxamic acids have been synthesized (Summers et al., 1987) in the hope of developing an effective anticancer agent whose mode of action is directed against ribonucleotide reductase; difluorobenzohydroxamic acids have exhibited high potency both in vitro and in vivo.

(I)

The crystal structure of two substituted aroylhydroxamic acids have recently been reported (Shang et al., 2005a,b), and here we describe the structure of another example, 2,4difluorobenzohydroxamic acid, (I) (Fig. 1).

The mean deviation from the plane $\mathrm{O} 1 / \mathrm{C} 7 / \mathrm{N} 1 / \mathrm{O} 2$ is $0.0292 \AA$, and the $\mathrm{C}-\mathrm{N}$ bond length (Table 1) shows partial double-bond character. The dihedral angle between the O1/ $\mathrm{C} 7 / \mathrm{C} 1$ and benzene ring planes is $3.5(1)^{\circ}$, indicating the possibility of conjugation between the carboxyl and benzene groups.

The molecular structure of the title compound, showing the atomlabelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
\qquad

There is a short intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ contact and the molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming one-dimensional chains of rings running parallel to the [100] direction (Fig. 2).

Experimental

Methyl 2,4-difluorobenzoate ($1.72 \mathrm{~g}, 10 \mathrm{mmol}$) was added to an aqueous solution (15 ml) of $\mathrm{NH}_{2} \mathrm{OH}(16 \mathrm{mmol})$ under N_{2} and the system was stirred at room temperature overnight. The pH of the solution was adjusted to about 7 using concentrated hydrochloric acid with ice cooling, and the resulting solid product was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from methanol.

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~F}_{2} \mathrm{NO}_{2} & Z=4 \\
M_{r}=173.12 & D_{x}=1.653 \mathrm{Mg} \mathrm{~m}^{-3} \\
\text { Monoclinic, } P 2_{1} / c & \text { Mo } \mathrm{C} \mathrm{\alpha} \text { radiation } \\
a=6.9266(10) \AA & \mu=0.16 \mathrm{~mm}^{-1} \\
b=15.358(2) \AA & T=292(2) \mathrm{K} \\
c=7.0430(11) \AA & \text { Block, colourless } \\
\beta=111.795(3)^{\circ} & 0.30 \times 0.20 \times 0.15 \mathrm{~mm} \\
V=695.68(18) \AA^{3} &
\end{array}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.955, T_{\text {max }}=0.970$

Refinement

Refinement on F^{2}	H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0664 P)^{2}\right]$
$w R\left(F^{2}\right)=0.126$	where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$S=1.03$	$(\Delta / \sigma)_{\max }<0.001$
1564 reflections	$\Delta \rho_{\max }=0.24 \mathrm{e}^{-3}$
109 parameters	$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{C} 7-\mathrm{O} 1$	$1.2331(17)$	$\mathrm{N} 1-\mathrm{O} 2$	$1.3903(17)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.324(2)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~F} 2$	0.85	2.03	$2.6776(17)$	132
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{i}}$	${ }^{\mathrm{H}}$	0.86	1.80	$2.6129(19)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {ii }}$		0.85	2.28	$2.935(2)$

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $-x+1,-y+1,-z+1$.

All H atoms were placed in calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

Figure 2
Packing diagram for the title compound, showing the hydrogen-bond interactions as dashed lines [symmetry codes: (a) $2-x, 1-y, 1-z$; (b) $1-x, 1-y, 1-z$].

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Program for New Century Excellent Talents in Universities of China and from the Education Commission of Shanxi Province of China.

References

Bruker (1997). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Shang, X.-M., Meng, X.-G., Wu, J.-Z. \& Li, Q.-S. (2005a). Acta Cryst. E61, o1961-o1962.
Shang, X.-M., Meng, X.-G., Wu, J.-Z. \& Li, Q.-S. (2005b). Acta Cryst. E61, o2328-o2329.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Summers, J. B., Gunn, B. P., Mazdiyasni, H., Goetze, A. M., Young, P. R., Bouska, J. B., Dyer, R. D., Brooks, D. W. \& Carter, G. W. (1987). J. Med. Chem. 30, 2121-2126.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

