organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Mei Shang,^a Ji-Zhou Wu^a* and Qing-Shan Li^{a,b}*

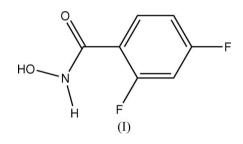
^aSchool of Pharmaceutical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China, and ^bSchool of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, People's Republic of China

Correspondence e-mail: ywjz@mail.tjmu.edu.cn, shang430030@yahoo.com

Key indicators

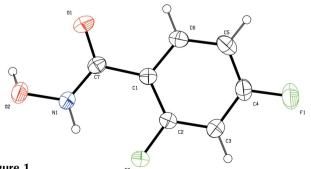
Single-crystal X-ray study T = 292 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ R factor = 0.046 wR factor = 0.126 Data-to-parameter ratio = 14.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


2,4-Difluorobenzohydroxamic acid

In the title compound, $C_7H_5F_2NO_2$, the hydroxyl group is *trans* to the difluorophenyl group with respect to the C–N bond. The molecules are linked into chains of rings parallel to [100] by a combination of O–H···O and N–H···O hydrogen bonds.

Received 29 August 2006 Accepted 30 August 2006


Comment

A range of aroylhydroxamic acids have been synthesized (Summers *et al.*, 1987) in the hope of developing an effective anticancer agent whose mode of action is directed against ribonucleotide reductase; difluorobenzohydroxamic acids have exhibited high potency both *in vitro* and *in vivo*.

The crystal structure of two substituted aroylhydroxamic acids have recently been reported (Shang *et al.*, 2005a,b), and here we describe the structure of another example, 2,4-difluorobenzohydroxamic acid, (I) (Fig. 1).

The mean deviation from the plane O1/C7/N1/O2 is 0.0292 Å, and the C–N bond length (Table 1) shows partial double-bond character. The dihedral angle between the O1/C7/C1 and benzene ring planes is $3.5 (1)^{\circ}$, indicating the possibility of conjugation between the carboxyl and benzene groups.

Figure 1

The molecular structure of the title compound, showing the atomlabelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

© 2006 International Union of Crystallography All rights reserved There is a short intramolecular $N-H\cdots F$ contact and the molecules are linked by intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (Table 2), forming one-dimensional chains of rings running parallel to the [100] direction (Fig. 2).

Experimental

Methyl 2,4-difluorobenzoate (1.72 g, 10 mmol) was added to an aqueous solution (15 ml) of NH₂OH (16 mmol) under N₂ and the system was stirred at room temperature overnight. The pH of the solution was adjusted to about 7 using concentrated hydrochloric acid with ice cooling, and the resulting solid product was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from methanol.

Z = 4

 $D_x = 1.653 \text{ Mg m}^{-3}$ Mo *K* α radiation

 $\mu = 0.16 \text{ mm}^-$

T = 292 (2) K

 $\begin{aligned} R_{\rm int} &= 0.044\\ \theta_{\rm max} &= 27.4^\circ \end{aligned}$

Block, colourless

 $0.30 \times 0.20 \times 0.15~\text{mm}$

4297 measured reflections

1564 independent reflections

1091 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0664P)^2]$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

where $P = (F_0^2 + 2F_c^2)/3$

Crystal data

 $C_7H_5F_2NO_2$ $M_r = 173.12$ Monoclinic, $P2_1/c$ a = 6.9266 (10) Å b = 15.358 (2) Å c = 7.0430 (11) Å $\beta = 111.795$ (3)° V = 695.68 (18) Å³

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.955, T_{\rm max} = 0.970$

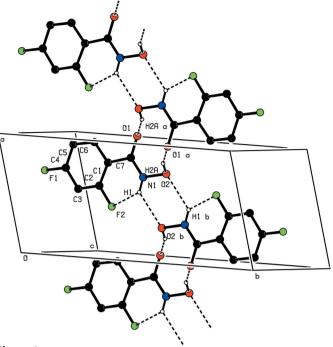
Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.126$ S = 1.031564 reflections 109 parameters

Table 1

Selected bond lengths (Å).

C7-O1	1.2331 (17)	N1-O2	1.3903 (17)
C7-N1	1.324 (2)		


Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1 \cdots F2 \\ O2 - H2A \cdots O1^{i} \\ N1 - H1 \cdots O2^{ii} \end{array}$	0.85	2.03	2.6776 (17)	132
	0.86	1.80	2.6129 (19)	158
	0.85	2.28	2.935 (2)	134

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

All H atoms were placed in calculated positions and treated as riding atoms, with C-H = 0.93 Å, O-H = 0.82 Å, N-H = 0.86 Å and $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C,N)$ or $1.5U_{\rm eq}(\rm O)$.

Figure 2

Packing diagram for the title compound, showing the hydrogen-bond interactions as dashed lines [symmetry codes: (a) 2 - x, 1 - y, 1 - z; (b) 1 - x, 1 - y, 1 - z].

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge financial support from the Program for New Century Excellent Talents in Universities of China and from the Education Commission of Shanxi Province of China.

References

- Bruker (1997). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). SAINT (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
- Shang, X.-M., Meng, X.-G., Wu, J.-Z. & Li, Q.-S. (2005a). Acta Cryst. E61, 01961–01962.
- Shang, X.-M., Meng, X.-G., Wu, J.-Z. & Li, Q.-S. (2005b). Acta Cryst. E61, 02328–02329.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Summers, J. B., Gunn, B. P., Mazdiyasni, H., Goetze, A. M., Young, P. R., Bouska, J. B., Dyer, R. D., Brooks, D. W. & Carter, G. W. (1987). J. Med. Chem. 30, 2121–2126.